If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+6x-60=0
a = 18; b = 6; c = -60;
Δ = b2-4ac
Δ = 62-4·18·(-60)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-66}{2*18}=\frac{-72}{36} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+66}{2*18}=\frac{60}{36} =1+2/3 $
| 4.5x=25 | | 31x-2+2+59x=180 | | 10a-2a= | | 6(5y=7)=7(4y-10) | | 13x+7=15x-7 | | 2(s-17)=66 | | 5a^2-100=0 | | -8=6.7v | | 4s-21=3+s | | 9(n+2)=99 | | 7=4+r | | 12+5g=47 | | 5x+2(5x+5)+10=80 | | 0=x^2+9x-121 | | -7/x+10=7 | | 20/0.5=x | | 21(b-45)-51(b-56)=20b+97b | | (3x+5)^2-6(3x+5)+9=0 | | 9(q+1)=90 | | 2-4(x+2)=16+2(4+3x) | | 5^(2x)=11 | | 4^3x-2=(1/8)^2x-1 | | -7(p-91)=0 | | -4(d-7)=524 | | 81=4d+9 | | 23-3j=11 | | 100/10-x=17 | | 10(-13-x)+11=-14-63 | | x^2=3^49 | | 6v^2-19v=0 | | 4(x+1)-4=3x+5 | | 4/10-x=19 |